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Title

Comprehensive Multi-omics Analyses Exposes a Precision Therapy Strategy that Targets 

Replication Stress in Hepatocellular Carcinoma Using WEE1 Inhibition.

Abstract

Introduction:

Hepatocellular carcinoma (HCC) is an extremely heterogeneous malignancy with a poor prognosis, 

highlighting the need to target specific vulnerabilities within the tumor during treatment. 

Objectives:

This study employs multi-omics analysis techniques to provide novel insights into personalized 

therapeutic strategies for HCC patients.

Methods:

We performed proteomic and transcriptomic sequencing on 178 and 94 clinical samples of primary 

HCC without prior treatment, respectively. We employed an unbiased Kinome CRISPR-Cas9 

library screening approach to systematically evaluate and identify novel therapeutic strategies that 

specifically target replication stress (RS). The synergy between oxaliplatin and adavosertib was 

verified using in vitro and in vivo models, including hydrodynamic injection, patient-derived 

organoids, and patient-derived xenografts. 

Results:

In both proteomic- and transcriptomic-based subtyping analyses, subtypes characterized by 

hyperproliferative features demonstrated the poorest prognosis and the highest levels of RS. Among 

all first-line chemotherapeutic agents in these analyses, oxaliplatin accumulated the highest RS 

levels in HCC, while resistance remained a major challenge. With unbiased Kinome CRISPR loss-

of-function gene screening, WEE1 was identified as a synthetic lethal target of oxaliplatin. The 

synergy between the WEE1 inhibitor adavosertib and oxaliplatin has been demonstrated in multiple 

in vitro and in vivo models. Mechanistically, adavosertib inhibits oxaliplatin-induced homologous 

recombination repair and G2/M checkpoint activation, leading to the accumulation of lethal DNA 
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damage. Furthermore, patients with HCC showing high RS levels had poor prognoses and 

responded well to adavosertib and oxaliplatin combination treatments. This was validated by 

preclinical models and unsupervised clustering analysis. 

Conclusions:

Our findings provide promising insights into the precise therapeutic targeting of RS in HCC at both 

the proteomic and transcriptomic levels. Furthermore, our study highlights the potential of 

combining oxaliplatin with adavosertib as a treatment approach for HCC.
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Significance Statement

In this study, we analyzed 178 and 94 pairs of clinical HCC samples using proteomic and 

transcriptomic sequencing, respectively. We discovered that the subtype characterized by high 

proliferation had the worst prognosis and highest RS level. Drug screening revealed that oxaliplatin 

promotes RS accumulation in HCC, but its resistance remains a challenge. Through unbiased 

CRISPR deletion-gene screening, WEE1 was identified as a lethal target of oxaliplatin. The WEE1 

inhibitor adavosertib inhibits oxaliplatin-induced DNA repair, leading to lethal DNA damage 

accumulation. Furthermore, our clustering analysis based on RS levels demonstrated that HCC 

patients with high RS levels have poorer prognoses and be more beneficial from adavosertib and 

oxaliplatin combination therapy. These findings support an individualized treatment approach for 

HCC targeting RS based on WEE1 Inhibition. 



7

Introduction

Among all cancers, hepatocellular carcinoma (HCC) is the third leading cause of death from cancer 

worldwide[1]. In early stage HCC, surgical treatment may be effective, but the five-year survival 

rate remains low[2]. Over the past twenty years, large-scale multi-omics analyses, including 

proteomics and transcriptomics, revealed that HCC is highly heterogeneous[3-5]. This suggests that 

standard therapeutic strategies are only efficacious for limited subtypes of patients. Therefore, there 

is an urgent need for more effective cancer vulnerability-targeting or individualized treatment 

strategies against advanced HCC.

Replication stress (RS) is closely linked to a defective DNA damage response (DDR), leading to 

genomic instability, which is a hallmark of cancer[6]. Due to the higher RS level, cancer cells depend 

on enhanced RS response pathways, such as DDR and cell cycle checkpoint regulation for survival[7]. 

Two approaches are being investigated for therapeutically targeting RS[8, 9]: 1) Inducing catastrophic 

DNA damage by overriding cell cycle checkpoints and 2) pushing cells with unresolved RS into the 

cell cycle by depleting cellular resources vital for DNA replication. 

Oxaliplatin is a chemotherapeutic agent frequently used for advanced HCC[10, 11], and inhibits tumor 

cell proliferation by inducing DNA damage and exogenously increasing tumor cell RS. However, 

some patients are prone to oxaliplatin resistance and tumor recurrence[12-14]. It is therefore urgent to 

find synthetic lethal targets that are more sensitive to oxaliplatin. 

The protein kinase WEE1 inhibits cyclin-dependent kinases 1 and 2 (CDK1/2), causing the G2/M 

cell cycle checkpoint to activate, and cell cycle arrest to allow time for DNA repair[15, 16]. In recent 

studies, it has been suggested that tumor cells exhibiting high levels of RS or TP53 mutations may 

be more susceptible to DDR inhibitors, including WEE1 inhibitors[17-19]. Adavosertib (AZD1775 or 

MK1775), a narrow-spectrum inhibitor of WEE1, has antitumor activity, either alone or in 

combination with chemotherapy, and has been studied in a number of Phase II clinical trials[20-22]. 

Both preclinical and clinical data indicate that adavosertib causes DNA damage, accelerates mitotic 

entry, and when combined with chemotherapy, enhances antitumor efficacy[23]. Nevertheless, the 

efficacy of adavosertib in targeting the vulnerability of RS in HCC remains to be investigated. 

This study revealed that both proteomics and transcriptomics subgroups with over-proliferation 

exhibited the poorest prognoses and the highest RS levels in the cohort, suggesting the possibility 

of targeting RS for HCC treatment. Preclinical drug screening tests and unbiased kinome CRISPR 
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deletion-gene screening indicated that the combination of adavosertib and oxaliplatin may be the 

most effective treatment for RS in HCC. The combination of adavosertib and oxaliplatin enhanced 

DNA damage and induced mitotic catastrophe and apoptosis, resulting in an accumulation of RS 

with a consequent synergistic effect. These results indicate that this combination may offer potent 

antitumor effects by targeting RS in HCC. Furthermore, our findings suggest that tumor RS level 

could serve as a prognostic marker for HCC and guide drug treatment regime based on risk-benefit 

analysis, providing valuable insights for precision therapies.
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Results

1. Classification of HCC based on proteomics and transcriptomic analysis

To gain a comprehensive molecular understanding of patients with HCC, paired non-tumor and 

tumor liver tissue samples were collected from 178 individuals diagnosed with HCC for 

proteogenomic analysis. An additional 94 patients were included in the study and paired tissue 

samples from these patients were evaluated according to strict transcriptomic analysis criteria (Fig. 

1A).

Isobaric tandem mass tags (TMT)-based global proteomics identified 9,544 proteins, with a median 

of 7,653 proteins per sample (Fig. S1A-D and Table S1). Quality control (QC) analysis of the protein 

groups, which showed a high Spearman correlation coefficient, confirmed the high quality of the 

mass spectrometer (Fig. S1E). Proteomic data were analyzed using principal component analysis 

(PCA), revealing no obvious differences in the years of sample collection or experimental batches, 

suggesting the absence of batch effects (Fig. S1F, G). Furthermore, the PCA data demonstrated 

significant spatial separation between tumor and non-tumor tissues (Fig. S1H). The volcano plot 

and Kyoto encyclopedia of genes and genomes (KEGG) enrichment results based on differential 

genes between tumor and non-tumor tissues showed different expression patterns (Fig. S1I, J and 

Table S2, S3).

To evaluate the heterogeneity and homogeneity among tumor tissue samples, unsupervised 

clustering was conducted based on the coefficient of variation (CV top 95%) of proteins in the tissue 

samples using Nonnegative Matrix Factorization (NMF) (Fig. S1K and Fig. S2A-C). This analysis 

identified three subgroups (S-I, S-II, and S-III) among the 178 samples (Fig. 1B and Table S4, S5). 

PCA results identified a significant spatial separation specifically categorizing the tumor tissues into 

the three subgroups (Fig. S2D), as opposed to the paired non-tumor liver tissues (Fig. S2E). Notably, 

S-II exhibited higher levels of vascular invasion (p = 0.0043), recurrence rates (p = 0.0491), and 

TNM stages than the other two subgroups and had the worst prognosis (Fig. 1C, Fig. S2F, and Table 

S6). Different molecular profiles were found among the three proteomic subgroups based on 

pathway enrichment analyses (Fig. 1D). Features of S-II were more likely driven by proliferative 

signaling including epithelial-mesenchymal transition, E2F targets, G2/M checkpoint, mitotic 

spindle, KRAS targets, MYC targets, and others. The S-III subgroup exhibited high xenobiotic 

metabolism, peroxisome, adipogenesis, fatty acid metabolism, and others, indicating tumors of this 
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subgroup were possibly driven by elevated metabolic processes. A few pathways (E2F targets, 

G2/M checkpoint, and Peroxisome) were differentially activated in S-I, resembling a partial mixture 

of S-II and S-III features including intermediate activation of certain metabolic and proliferation-

signaling pathways. In addition, Gene Ontology (GO) enrichment analysis results revealed 

significant enrichment of humoral immunity-related pathways in S-II subtype compared to S-I and 

S-III subtypes (Fig. S2G and Table S7). Tumors with highly proliferative tendencies tended to have 

high levels of RS, and further Gene Set Enrichment Analysis (GSEA) results indicated that S-II had 

higher RS levels compared to the other two subgroups (Fig. S2H).

For transcriptomic analysis and to define the molecular subgroups of HCC, we extracted 5,000 

genes showing the highest expression variation in tumor tissues (adjusted p-value < 0.05, Wilcox 

test with Benjamini-Hochberg correction), based on RNA-seq data from 94 patients with primary 

HCC (Table S8). Consistency checks (Fig. S3A, B) and factorization rank assessments within 

clusters (Fig. S3C) showed that all 94 patients with HCC could be classified into three subgroups 

based on NMF: S-I, S-II, and S-III (Fig. 1E). Notably, S-III demonstrated significantly higher tumor 

sizes (p = 0.0037), recurrence rates (p = 0.0081) and TNM stages compared to the other two 

subgroups (Fig. 1E, Fig. S3D, and Table S9). Furthermore, the S-III subgroup had the worst 

prognosis (Fig. 1F). Molecular profiles of each transcriptomic subgroup were revealed through 

pathway enrichment analysis (Fig. 1G). The S-I subgroup exhibited the highest immune activation 

characteristics, such as B cell activation, CD4 positive alpha-beta T cell activation, T cell 

proliferation, regulation of macrophage activation, and others. Features of S-II were likely driven 

by metabolic processes such as long-chain fatty acid metabolic process, fatty acid transport, vitamin 

transport, serine family amino acid metabolic process, and others. Conversely, S-III exhibited high 

mitotic nuclear division, cell cycle checkpoint signaling, regulation of DNA repair, mitotic 

cytokinesis, and others, indicating that tumors in this subgroup are driven by increased proliferative 

processes. Additionally, GO enrichment analysis and GSEA results indicated that S-III had higher 

RS-related pathway activation than the other two subgroups (Fig. S3E, F and Table S10).

Subsequently, integrated analyses of proteomics and transcriptomics (Fig. S4A, B and Table S11) 

revealed a positive correlation trend between quantified proteins and their associated genes, with a 

correlation coefficient of 0.4819 (Fig. S4C). In addition, the correlation coefficient of differentially 

expressed proteins and genes compared with adjacent non-tumor tissues was 0.7629 (Fig. S4D), and 

the correlation coefficient of proteins/genes with the same trend was 0.8065 (Fig. S4E). Further 

pathway enrichment analysis of proteins and genes that exhibited the same trend demonstrated 
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significant activation of RS-related gene sets (Fig. S4F, G). In additon, we also analyzed the overlap 

between proteomic and transcriptomic samples (Fig. S4H) and examined the correspondence of 

patients classified by both modalities into transcriptomic subtypes and proteomic subtypes (Fig. 

S4I).

Notably, these results highlight that subgroups with high RS levels have significantly worse 

outcomes in both proteomic and transcriptomic typing analyses. Differential levels of RS in tumor 

tissues versus normal tissues were investigated using GSEA to assess RS-related gene sets. Our 

analyses revealed that these gene sets were upregulated in tumor tissues compared to normal tissues, 

based on proteomics data (Fig. S5A) and transcriptomics data cohort (Fig. S5B), and The Cancer 

Genome Atlas (TCGA) database (Fig. S5C). Gene Expression Profiling Interactive Analysis 

(GEPIA) analysis (http://gepia.cancer-pku.cn/) also revealed increased expression of DDR-related 

genes in HCC (Fig. S5D).

So far, our study has established a comprehensive subtyping landscape for HCC through proteomic 

and transcriptomic analyses. Additionally, our findings strongly support the notion that RS is indeed 

a distinct characteristic and a highly promising therapeutic target for HCC.

2. Drug screening identified oxaliplatin as a RS-targeting therapy for treating HCC

To examine the potential impact of targeting RS in HCC, we employed patient-derived xenograft 

(PDX) models of different protomic subgroups to evaluate several chemotherapeutic agents 

commonly used for clinical gastrointestinal tumors (Fig. 2A): gemcitabine (100 mg/kg), oxaliplatin 

(10 mg/kg), epirubicin (3.5 mg/kg), 5-FU (50 mg/kg), irinotecan (15 mg/kg), and paclitaxel (10 

mg/kg), as well as sorafenib (60 mg/kg), a first-line therapeutic agent for HCC [24]. The first-line 

chemotherapy agent, oxaliplatin, had the highest therapeutic effect on the PDX models (Fig. 2B and 

Fig. S6A-C), causing a significant increase in RS accumulation, shown by immunohistochemical 

(IHC) staining for p-RPA2 (S4/S8) (Fig. 2C). However, because many patients develop oxaliplatin 

resistance and tumor recurrence, identifying key molecules linked to oxaliplatin resistance and 

analyzing new treatment strategies remains critical[25] . 

3. Identification of WEE1 as a synthetic lethal gene of oxaliplatin in HCC through kinome-

targeted CRISPR/Cas9 library screening

Signal transduction is crucial for kinases, which are attractive targets for drugs[26]. To systematically 
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identify sensitive synergistic targets of oxaliplatin treatment, a kinome-targeted CRISPR/Cas9 

library-based negative selection approach[27] was performed to screen for genes that, when deleted, 

potentiate the antitumor effects of oxaliplatin (Fig. 2H). The results of this screen identified WEE1 

as the most significant synthetic lethal gene post-oxaliplatin treatment in Huh7 cells (Fig. 2D, E and 

Table S12). Previous studies have highlighted WEE1's regulatory role in CDK1 phosphorylation, 

activating the G2/M checkpoint, and RS response[28, 29]. Western blots and IHC staining (n=113) 

demonstrated higher WEE1 expression in HCC tumors compared to adjacent non-tumor tissues (Fig. 

S6D and Fig. 2F). WEE1 and CDK1 mRNA expression levels were significantly higher in HCC 

tumors (Fig. 2G and Fig. S6E). The TCGA database showed that higher levels of WEE1 or CDK1 

expression are associated with poorer survival outcomes (Fig. 2H and Fig. S6F). Additionally, the 

HCC subgroup with the highest RS, S-III had the highest WEE1 and CDK1 mRNA expression 

compared to the remaining two subgroups (Fig. S6G). Separate GSEA using the proteomics data 

(Fig. S6H), transcriptomics data (Fig. S6I), and TCGA database (Fig. S6J), revealed that the G2/M 

checkpoint gene set was upregulated in HCC tumor tissues compared to non-tumor tissues. Based 

on these findings, targeting WEE1 in HCC may be a promising approach to counteract RS and 

synthetic lethal genes. 

4. Synergistic suppression of HCC malignant phenotypes by oxaliplatin and adavosertib in 

vitro and in vivo

The WEE1 inhibitor adavosertib (AZD1775 or MK1775) is currently in multiple phase II clinical 

trials (http://www.clinicaltrials.gov). In various HCC cell lines, adavosertib combined with 

oxaliplatin showed synergistic inhibition of cell viability when used alone or in combination. In 

most HCC cell lines, the combination treatment showed synergistic effects, as indicated by a 

combination index (CI) less than 1 (Fig. 3A). Additionally, the combination treatment decreased 

colony formation (Fig. 3B, C) and tumorsphere formation efficiency (Fig. 3D). The combination 

treatment of oxaliplatin and adavosertib was tested in vivo first by establishing xenograft models 

with Huh7 cells and treated mice with single-agent treatment (oxaliplatin (10 mg/kg) or adavosertib 

(50 mg/kg); combination treatment; or vehicle control. Combining oxaliplatin and adavosertib 

significantly suppressed tumor growth, consistent with in vitro experiments (Fig. 3E). Tumor weight 

and volume were significantly reduced, and no significant changes in mouse body weight were 

observed (Fig. 3F-H). In addition, orthotopic HCC models demonstrated that the combination 

treatment significantly suppressed tumor growth (Fig. 3I-K).

http://www.clinicaltrials.gov
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Moreover, we comprehensively assessed the impact of combining oxaliplatin and adavosertib 

against HCC progression. The combination treatment significantly reduced the migration and 

invasion of HCC cells according to transwell tests and wound healing assays (Fig. S7A-D). Cells 

treated with the combination showed a significant reduction in pseudopods, which are required for 

cell motility (Fig. S7E, F).

5. Adavosertib inhibits homologous recombination and synergistically enhances oxaliplatin-

induced DNA damage in HCC cells

RNA-seq was used to detect transcriptional changes in oxaliplatin-treated and adavosertib-treated 

Huh7 cells compared to vehicle control (Fig. S8A-D). In this analysis, RS-related terms such as 

DNA damage, cell cycle checkpoint, and apoptosis were upregulated in both treatment groups. 

However, after oxaliplatin or adavosertib treatment, some genes associated with DNA damage 

repair had different expression trends, which could be a reason for the synergistic effect (Fig. S8E, 

F). Interestingly, we also found that both WEE1 expression and the G2/M checkpoints were 

significantly activated following oxaliplatin treatment (Fig. S8G, H).

GSEA indicated a significant enrichment of DDR-related genes after treatment with adavosertib or 

oxaliplatin (Fig. 4A). We validated this effect by utilizing comet tail assays (Fig. S9A) and 

measuring DNA damage-associated protein expression levels (Fig. 4B) in single-agent treated HCC 

cells, which increased in a dose-dependent manner. Importantly, combination therapy resulted in 

significantly higher levels of comet tail (Fig. 4C), γH2AX foci (Fig. 4D), and DNA damage-

associated protein expression levels (Fig. 4E), compared to single-agent treatments. This confirmed 

that the synergistic combination of adavosertib and oxaliplatin leads to an increase in double-strand 

breaks (DSBs) and replication fork collapse in HCC cells.

The RNA-seq data revealed that most DNA damage repair-related genes were activated after 

oxaliplatin treatment but repressed after adavosertib treatment (Fig. 4F and Table S13). In order to 

further explore the potential mechanism of adavosertib enhancing DNA damage, the pDR-GFP or 

pimEJ5-GFP reporting systems were used to investigate its effect on homologous recombination 

(HR) or non-homologous recombination repair (NHEJ), respectively. Results showed that 

adavosertib decreased HR-mediated DNA double-strand break repair efficiency in both SNU449 

and Huh7 cells; whereas, increased NHEJ-mediated DNA repair efficiency, which was confirmed 

by examining HR-related and NHEJ-related proteins (Fig. 4G-J). Notably, nuclear RAD51 foci, an 
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HR marker that co-localized with γH2AX foci, was significantly activated following oxaliplatin 

treatment, while adavosertib antagonized RAD51 activation in the combination group (Fig. 4K). In 

addition, the NHEJ marker 53BP1 was activated after drug treatments, but was more evident after 

adavosertib treatment (Fig. 4I). GSEA results supported our conclusion that adavosertib could 

counteract oxaliplatin-induced enhancement of HR repair activation while simultaneously 

promoting NHEJ DNA repair mechanisms (Fig. S9B, C). 

6. Oxaliplatin in combination with adavosertib disrupts the cell cycle and excessive RS

After analyzing KEGG pathway enrichment and GSEA, significant alterations in the cell cycle were 

observed with both single-agent treatments (Fig. S10A, B and Fig. 5A). Oxaliplatin treatment 

prolonged S-phase occurrence and shortened the G2/M phase, activating G2/M checkpoint-related 

proteins and decreasing the expression of the mitotic-specific marker, p-HH3(S10), in HCC cells. 

In contrast, adavosertib led to G2/M checkpoint inactivation, driving a large proportion of cells into 

the M phase (Fig. S10C, D and Fig. 5B-D). Since WEE1 can prolong the S-phase and activate the 

G2/M cell-cycle checkpoint, which allows cells to repair DNA before mitosis [15], GSEA results 

further suggested that G2/M checkpoints were active after oxaliplatin treatment but deactivated after 

adavosertib treatment (Fig. 5E). Moreover, we examined the effect of the drug combination on the 

cell cycle and found that adavosertib partially reversed oxaliplatin-induced decrease of the G2/M 

cell ratio (Fig. 5F and Fig. S10E). Immunofluorescence labeling of p-HH3 confirmed Adavosertib 

increased mitotic cell numbers after oxaliplatin treatment partially (Fig. 5G). Additionally, western 

blot results revealed that while inhibitory phosphorylation of CDK1 and other G2/M checkpoint-

associated proteins was elevated after oxaliplatin stimulation, combined treatment with adavosertib 

effectively abrogated this effect in SNU449 and Huh7 cells (Fig. 5H). 

In previous studies, the ATR-CHK1-WEE1 axis has been demonstrated to be crucial for regulating 

the cell cycle response to RS[30]. We observed that adavosertib treatment suppressed ATR activation 

in response to RS (Fig. S10F), and the combination treatment significantly increased RS 

accumulation in HCC cells, as evidenced by immunofluorescence staining of p-RPA2 (S4/S8) (Fig. 

5I). Metaphase spread assay results indicated that the combination treatment generated significantly 

more chromosomal abnormalities than each monotherapy, underscoring an increased level of 

chromosomal instability (Fig. 5J). By suppressing oxaliplatin-induced DNA damage checkpoint 

activation, avosertib treatment led to cells entering mitosis without reparation of DNA damage. We 

found that cells treated by the combination had significantly more DNA damage at different stages 
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of mitosis compared to untreated and single-agent treated cells (Fig. 5K). 

7. Combined treatment with oxaliplatin and adavosertib resulted in premature mitosis and 

synergistically triggered enhanced apoptosis in HCC cells

Chromosomal aberrations are frequently associated with catastrophic chromosomal events that are 

lethal to cancer cells[31]. The mitotic morphology of HCC cells that received various drug treatments 

were evaluated, which found that untreated cells exhibited a typical mitotic morphology with 

condensed chromosomes arranged on the metaphase plate, while oxaliplatin-treated cells underwent 

little mitosis. However, adavorsertib- or combination-treated cells presented loose chromatin, 

irregularly distributed spindles, micronucleations, and inflated cell shapes, indicating mitotic 

catastrophe (Fig. 6A and Fig. S11A). In addition, the combination treatment significantly increased 

the proportion of cells that underwent mitotic catastrophe (Fig. 6B, C). GSEA results further 

confirmed the activation of apoptosis-related pathways (Fig. S11B, C). Morphologically, cells 

experiencing mitotic catastrophe exhibited pan-nuclear DNA damage and apoptotic signals, 

detected by immunofluorescence staining of γH2AX and cleaved PARP (Fig. 6D and Fig. S11D). 

Moreover, combined treatment increased apoptosis (Fig. 6E, F) confirmed by increased levels of 

cleaved PARP and active Caspase-3 in HCC cells (Fig. 6G). Consistent with our in vitro findings, 

the combination treatment synergistically inhibited tumor tissue proliferation and induced greater 

DNA damage, RS and apoptosis in tumor tissue, as measured by H&E and IHC (Fig. 6H).

In conclusion, oxaliplatin-induced DNA damage activates G2/M checkpoints and blocks the cell 

cycle before mitosis. Adavosertib, on the other hand, inhibits oxaliplatin-induced activation of HR 

repair and DNA damage checkpoints, forcing cells with unrepaired damaged DNA into mitosis. 

This combination causes excessive RS and ultimately induces mitotic catastrophe and apoptosis, 

producing a significant synergistic effect. 

8. The combination of oxaliplatin and adavosertib remains synergistic in hydrodynamic 

injection models and in sorafenib-resistant cells

In order to investigate whether oxaliplatin and adavosertib work synergistically in cancers with high 

RS, hydrodynamic injection (HDI) models were constructed and used for two weeks using two 

oncogenic plasmids capable of activating RS, N-RAS, and C-MYC, and the Sleep Beauty (SB) 

transposon plasmid[32, 33] (Fig. 7A). After treating HDI mice with single-agent, combination, or 

vehicle control for the following two weeks, PET/CT results showed significantly lower 
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standardized liver uptake values (SUV) in the combination treatment group than the single drug and 

control groups (Fig. 7B). Moreover, the combination treatment was accompanied by decreases in 

the number of tumor foci and the liver/body weight ratio (Fig. 7C, D). Survival analysis revealed 

that mice in the combination groups survived significantly longer than those in the control and 

single-agent groups (Fig. 7E). 

Sorafenib is considered a first-line drug in the treatment of advanced HCC, but clinical resistance 

remains a problem[34]. Using a sorafenib-resistant HCC cell model, we investigated the effect of 

oxaliplatin and adavosertib combined therapy on sorafenib-resistant HCC cell growth. Compared 

to normal SNU449 cells, our sorafenib-resistant HCC cell line (SNU449-SR) displayed a higher 

IC50 value (Fig. S12A) and was insensitive to sorafenib (Fig. S12B-D). SNU449-SR cells were 

inhibited synergistically by adavosertib and oxaliplatin (CI=0.563) in this experiment (Fig. 7F). 

Moreover, combination therapy significantly reduced colony formation (Fig. 7G) and tumorsphere 

formation (Fig. 7H and Fig. S12E) efficiencies of SNU449-SR cells compared to each single-agent 

treatment. As observed in SNU449 cells, results showed that adavosertib inhibits oxaliplatin-

activated G2/M checkpoints, leading to a greater accumulation of DNA damage and ultimately 

synergistically inducing apoptosis in SNU449-SR cells (Fig. 7I-L). These results indicate that 

oxaliplatin combined with adavosertib still has a strong synergistic effect in high-RS models and 

sorafenib-resistant models. 

9. Potential classification and individualized treatment strategies for patients with HCC based 

on RS

We re-analyzed the transcriptome data from our cohort and the TCGA cohort to determine if 

differences exist in RS levels. On the basis of the gene panel response to RS, k-means clustering 

revealed significantly higher RS scores in tumor tissues. Moreover, 94 patients were divided into 

two subgroups based on different RS levels (RS-High and RS-Low), which were verified by Gene 

set variation analysis (GSVA) enrichment scores, and observed that high RS levels were strongly 

associated with worse prognosis, low histological grade, and high rates of tumor recurrence or 

metastasis (Fig. 8A, B and Table S14). Interestingly, we also found that WEE1 and CDK1 had 

higher mRNA expression levels in RS-High patients compared to RS-Low patients (Fig. S13A). 

These findings were also supported by performing the same analysis using the TCGA cohort (Fig. 

S13B). In the analysis of imaging data, it has been observed that patients having a lower RS level 

may experience a better prognosis after undergoing postoperative oxaliplatin treatment as compared 
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to patients with higher RS levels (Fig. S13C). In addition, no significant difference in immune 

infiltration levels based on proteomic analysis of immune activation markers was found between 

RS-High and RS-Low patients (Fig. S13D).

Using a similar approach, clustering subgroups based on HR levels demonstrated significant 

associations with prognosis, histological grade, and tumor recurrence or metastasis rates (Fig. S14A, 

B, Table S15). Notably, GSEA scores of RS exhibited a strong correlation with HR scores (Fig. 

S14C). The clustering subgroups based on RS and HR were significantly correlated as well, with 

most S-III patients having proliferative features and presenting with an elevated level of RS 

response and HR activation (Fig. 8C and Table S16). These observations indicate that highly 

proliferative tumors have increased levels of RS and HR capacity to adapt to the extreme conditions 

generated by RS. We used patient-derived tumor organoids (PDTO) built in our previous study[35, 

36] and PDX models[36] to assess whether intrinsic RS levels could be used as potential biomarkers 

to evaluate the effectiveness of oxaliplatin and avosertib in the treatment of HCC (Fig. 8D). PDTO 

1-3 were developed using tissues from patients 1-3, who exhibited high RS levels, whereas, PDTO 

4-5 was developed using tissues from patients 4-5 with low RS (Fig. S15A). Treatment of these 

PDTOs showed that PDTOs from patients with low RS levels were sensitive to oxaliplatin; whereas, 

those from patients with high RS levels were more sensitive to combination therapy (Fig. 8E, F). In 

addition, we selected patients 1, 2, 4, and 5 and constructed the PDX 5-8 models. Consistent with 

the PDTO models, PDX models with low-RS were sensitive to oxaliplatin, whereas high-RS PDX 

models were less sensitive to oxaliplatin and benefited more from combination therapy (Fig. 8G, H 

and Fig. S15B, C). These models demonstrated that the combination of oxaliplatin and adavosertib 

produce strong synergistic tumor suppression, by enhancing DNA damage, RS, and apoptosis (Fig. 

S15D).

According to the findings above, RS levels may serve as a prognostic indicator for patients with 

HCC. Patients with higher RS levels may benefit more from the synergistic effect of oxaliplatin and 

adavosertib, which may have implications for precision medicine (Fig. 8I). 
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Discussion

The high heterogeneity of HCC makes it one of the deadliest malignancies in the world. Previous 

therapies designed around a ‘one-size-fits-all’ model have not provided significant clinical benefits 

for most patients. Numerous existing multi-omics studies have demonstrated that stratifying patients 

based on characteristics such as genotype and phenotype is not only significant for prognosis but 

also provides a solid theoretical foundation for clinical medication and personalized treatment[37-40]. 

Therefore, individualized treatment for HCC with different genetic profiles is the future of HCC 

therapy.

With the advancements in omics technology, numerous proteomic and transcriptomic clusters have 

emerged in HCC. However, due to variations in sample cohorts, geographic locations, depth of 

omics analysis, typing results, and biological characteristics of subtypes, these clusters possess their 

own specificities and differences[4]. Therefore, each study’s multiple types hold unique significance. 

Previous classification systems, such as those proposed by Hoshida[41] based on gene expression, 

introduced an S1-S3 typing scheme, and Boyault[42] based on HCC genomics technology, proposed 

a G1-G6 typing scheme, which incorporated clinical and genetic characteristics such as P53, 

PIK3CA, Wnt/β-catenin, hepatitis B virus (HBV) copy number, and AFP expression levels. It is 

worth noting that Gao et al.[5] performed proteogenomic characterization on 159 patients with HBV-

related HCC and identified three subgroups with distinct signaling features and metabolic pathways. 

The metabolic subgroup had the highest levels of metabolism-related proteins and maintained the 

best liver function. The proliferation subgroup displayed up-regulated expression of proliferation-

associated proteins and had the shortest overall survival. The microenvironmental dysregulation 

subgroup exhibited down-regulated expression of immunity, inflammatory, and stromal proteins. 

Although their study focused on HBV-associated HCC and the specific molecular characteristics of 

each subtype were different from ours, they also suggested a relationship between the proliferative 

characteristics of liver cancer and prognosis, which supports our conclusions. However, these 

classifications lack further in-depth studies on the characteristics of high proliferation in HCC and 

the relationship between replication stress levels.

Importantly, based on this finding, we conducted an in-depth analysis of RS levels in each subtype 

and found that subtypes with proliferative characteristics had higher levels of RS. We then 

regrouped the samples according to their RS levels and correlated them with the previous 

unsupervised clustering results. This approach allowed us to propose a precision medicine treatment 
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plan targeting specific RS levels, offering both novelty and potential clinical translational 

significance. Furthermore, after performing unsupervised RS clustering based on clinical samples, 

we found that RS levels are related to patient prognosis, a conclusion that was replicated in the 

TCGA database. This enhances the generalizability and significance of our research.

Despite the potential for targeting RS as a therapeutic strategy in managing HCC, research into 

precise application options remains scarce. To further investigate this, we conducted an analysis of 

RS levels specifically for the highly proliferative subgroup. Our results revealed that HCC cases 

from the high proliferation subgroup have higher levels of RS compared to other subgroups, which 

were also correlated with abnormal cell cycle checkpoints and DNA damage repair mechanisms.

Through preclinical drug screening, we found that oxaliplatin has powerful efficacy in targeting RS 

to suppress HCC tumor progression. Oxaliplatin is a chemotherapeutic agent that directly targets 

cell replication. By inhibiting tumor cell proliferation, exogenously inducing DNA damage, and 

elevating cell RS, it has been shown to improve the survival rates of patients with unresectable HCC. 

However, some patients are prone to oxaliplatin resistance and tumor recurrence. By combining 

bioinformatic analysis and unbiased kinome-targeted CRISPR loss-of-function gene screens to 

identify oxaliplatin-sensitizing targets, we identified WEE1 as a synthetic lethal target with RS in 

HCC.

As a result of P53 mutations and other defects, most human tumor cells undergo G1/S phase 

checkpoint inactivation, making them reliant on G2/M checkpoint regulation, which WEE1 plays a 

crucial role in[15]. By phosphorylating CDK1 at tyrosine 15, WEE1 induces G2/M phase arrest, 

providing a sufficient opportunity for DNA repair. The WEE1 inhibitor adavosertib inhibits HR 

repair, blocks the G2/M checkpoint, and is currently undergoing multiple phase II clinical trials[28]. 

However, there have been only a few studies conducted on the use of adavosertib in HCC, especially 

in combination with other clinically approved drugs. Adavosertib and oxaliplatin exhibited 

synergistic effects in various in vitro and in vivo models, including HDI models with high RS 

properties, which were constructed using mixed RS oncogene plasmids (N-RAS and C-MYC). 

Oxaliplatin-induced DNA damage triggers homologous and non-homologous recombination repair 

and cell cycle checkpoint activation in HCC cells, limiting the accumulation of lethal RS. On the 

one hand, Adavosertib enhances the effect of oxaliplatin-induced DNA damage, by suppressing 

oxaliplatin-induced HR repair. Adavosertib, on the other hand, prevents cells with incomplete DNA 
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repair from entering mitosis at the G2/M checkpoint. Therefore, the combination of adavosertib and 

oxaliplatin induces lethal DNA damage and an extreme increase in RS, ultimately leading to 

apoptosis. Further morphological evidence shows that lethal RS caused by the combination leads to 

extensive chromosomal damage and mitotic catastrophe.

To describe the role of adavosertib in DNA damage repair, we employed a pDR-GFP or pimEJ5-

GFP reporter system and observed that adavosertib impaired HR repair but activated NHEJ repair 

in HCC. Several studies have demonstrated that high-fidelity DDR mechanisms, including DSB 

repair via HR processes, are defective, resulting in a dependency on compensatory DDR machinery 

(often error-prone, such as NHEJs)[43]. However, the findings of this study demonstrate that the 

compensatory activation of NHEJ upon adavosertib treatment could not alleviate the extensive DNA 

damage caused by oxaliplatin. Therefore, it is promising to investigate the combined effects of 

WEE1 inhibition and NHEJ inhibition to comprehensively suppress compensatory DDR activation 

following oxaliplatin treatment.

Through integrating bioinformatics, intrinsic RS levels were shown to serve as a marker of 

prognosis and chemotherapy sensitivity in patients with HCC. On one hand, patients with high RS 

levels had worse prognoses, and there was a large overlap between patients with HCC showing high 

proliferation characteristics and those showing high RS levels. This may be because tumor cells 

from these patients have a greater ability to adapt to the extreme genomic stress conditions 

associated with overactive DNA replication. On the other hand, tumor intrinsic RS levels were 

found to also serve as a potential biomarker for chemosensitivity. In this study, enhanced RS level 

was associated with enhanced HR capacity, consistent with recent studies that show enhanced DDR 

contributions to RS and chemotherapy/radiotherapy tumor resistance . Thus, patients with low RS 

levels may benefit from oxaliplatin monotherapy, as they tend to be accompanied with milder DDR 

activation and are more sensitive to oxaliplatin-induced DNA damage and lethal RS accumulation. 

RS accumulation in tumor cells makes adavosertib and oxaliplatin a more effective combination in 

patients with high RS levels.

It is significant to further explore whether adavosertib can be effective in oxaliplatin-resistant 

models. Using an oxaliplatin-resistant HCC cell model, we investigated the effect of combined 

therapy with oxaliplatin and adavosertib on oxaliplatin-resistant HCC cell growth. Compared to 

normal SNU449 cells, our oxaliplatin-resistant HCC cell line (SNU449-OR) displayed a higher 

IC50 value (Fig. S16A) and was insensitive to oxaliplatin (Fig. S16B). G2/M checkpoint-related 
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proteins, such as WEE1, were significantly upregulated in SNU449-OR cells (Fig. S16C). 

Additionally, our results show that adavosertib continues to have good efficacy in SNU449-OR cells 

(Fig. S16D-F). These findings significantly enhance the clinical relevance and application potential 

of this drug combination.

FOLFOX, a widely used oxaliplatin-based chemotherapy regimen, combines 5-fluorouracil (5-FU), 

oxaliplatin, and leucovorin[44]. While 5-FU inhibits thymidylate synthase to block DNA synthesis 

and oxaliplatin forms crosslinks with DNA to disrupt replication and transcription, these agents do 

not alter the DNA damage repair capacity, potentially leading to resistance. In contrast, oxaliplatin 

combined with adavosertib offers mechanistic advantages by inhibiting WEE1 kinase to disrupt 

DNA repair, thereby enhancing oxaliplatin’s efficacy and potentially overcoming resistance. 

Regarding biosafety, the combination of oxaliplatin and adavosertib reduces gastrointestinal and 

mucocutaneous reactions compared to FOLFOX, which is associated with broader side effects such 

as oral ulcers[45] and hand-foot syndrome[46, 47]. With current technology, it is challenging to 

definitively demonstrate which treatment regimen is more effective in clinical settings. However, 

our preclinical PDTO model (Fig. S16G) suggests that adavosertib combined with oxaliplatin is 

slightly superior to the FOLFOX regimen at the same oxaliplatin concentration. These results 

indicate that the combination of these two drugs has promising potential for clinical application.

Future research should focus on identifying complementary therapeutic strategies to platinum-based 

drugs for optimizing cancer treatment outcomes. These comprehensive therapeutic approaches not 

only significantly enhance the efficacy of platinum-based drugs but also provide patients with safer 

and more effective treatment options. We recognize that optimizing the pharmacokinetic properties 

of platinum-based drugs, exploring novel delivery systems, and targeting cancer-specific 

vulnerabilities are key research directions. First, platinum-based nanoparticles constructed through 

nanotechnology can significantly improve drug solubility, stability, and bioavailability, enhance 

drug permeability into tumor tissues, and reduce clearance by the reticuloendothelial system, 

thereby increasing drug cytotoxicity[48]. Additionally, designing platinum-based drugs to target the 

differences in DNA repair mechanisms between cancer cells and normal cells is an important 

strategy to improve treatment efficacy. This approach enhances selectivity and reduces side 

effects[49]. Based on our research, WEE1 inhibitors exhibit strong synthetic lethality with oxaliplatin, 

and combining these two drugs through nanotechnology for synergistic drug delivery is a feasible 

strategy for future studies. Future research should further explore these synergistic therapeutic 

strategies to optimize cancer treatment outcomes, providing patients with safer and more efficient 
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treatment options.

However, some issues still need to be addressed, one of the most important being diarrhea, a side 

effect of adavosertib. Due to its hydrophobic nature, adavosertib is currently administered orally, 

which has low bioavailability and poor pharmacological properties and may cause gastrointestinal 

side effects. Processing the drug into nanoformulations may optimize the pharmacological 

properties and bioavailability of adavosertib, reducing the required dosage and minimizing side 

effects.

In conclusion, our study offers promising insights into precision therapies for HCC at both the 

proteomic and transcriptomic levels and highlights the potential value of RS in HCC. The results of 

our study demonstrate that RS levels influence the response to oxaliplatin therapy and that targeting 

WEE1 signaling can sensitize HCC to this treatment. Additionally, this study demonstrates the 

potential feasibility of individualized treatment of liver cancer based on RS levels, indicating a need 

for further clinical research.

Conclusion

Targeted replication stress shows great promise in the treatment of liver cancer based on 

proteomic and transcriptomic analysis results. WEE1 inhibitor adavosertib and oxaliplatin jointly 

target replication stress in liver cancer, demonstrating a strong synergistic effect. adavosertib 

inhibits oxaliplatin induced homologous recombination repair as well as activated cell G2/M 

checkpoints, leading to extensive chromosomal damage and mitotic catastrophe. The replication 

stress level in liver cancer patients can be utilized as a biomarker to predict liver cancer prognosis 

and chemotherapy sensitivity.

Ethics statement 

The tissue samples were obtained from patients with HCC who underwent surgery at the First 

Affiliated Hospital of Zhejiang University School of Medicine. Each patient gave his or her 

written informed consent. The Ethics Committee of the First Affiliated Hospital of Zhejiang 

University School of Medicine (Ethics Code 2021-384) approved this study. Animal experiments 

were approved by the Animal Care Committee of Zhejiang University (Ethics Code 2019-1218) 
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and conducted in strict compliance with the National Institutes of Health Animal Care and Use 

Guidelines.
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Materials and Methods

Sample selection

The specimens were collected from the First Affiliated Hospital of Zhejiang University School of 

Medicine, Hangzhou, China. This study included all cases with histological evidence of HCC, 

regardless of their histological grade or surgical stage. Our study excluded patients with advanced 

stages of the disease, active secondary malignancies, or who had undergone any previous treatment 

including radiotherapy or chemotherapy in order to ensure the homogeneity of the study population. 

The clinical data of patients were documented in Table S6, which includes their gender, age, degree 

of differentiation, TNM stage, smoking status, drinking status, liver cirrhosis, vessel invasion, 

postoperative radiotherapy and chemotherapy, HBV, HCV, AFP, CA125, and CA19-9 levels, tumor 

size, tumor numbers, survival status, and recurrence or metastasis status. We obtained data on 

distant metastases during a follow-up of 80 months. The samples utilized in this study were primary 

tumors without any associated distance metastases. To de-identify each sample, a new study 

identification number was assigned, replacing the patient's name or medical record number.

Sample Preparation and Fractionation for DDA Library Generation

The samples were initially homogenized with an MP FastPrep-24 homogenizer. Subsequently, SDT 

(4% SDS, 100 mM DTT,100 mM TEAB pH 8.0) was added to the homogenized lysates and further 

sonicated (this step may be skipped for protein solutions), and boiled for 15 minutes. A BCA Protein 

Assay Kit (Bio-Rad, USA) was used to quantify the supernatant after spinning the samples at 

14000g for 40 minutes. Each sample used in this experiment was combined into one sample to 

generate a DDA library and conduct quality control testing. 

FASP Digestion procedure 

FASP was used to digest the proteins. Initially, 100 μg of proteins were mixed with 30 μl of SDT 

buffer (4% SDS, 100 mM DTT, 100 mM TEAB pH 8.0), and detergent was removed with UA 

buffer (8 M Urea, 100 mM TEAB pH 8.0) by repeated ultrafiltration (Microcon units, 10 kD). After 

adding 0.05M iodoacetamide to 100 μl of UA buffer, the samples were incubated in darkness for 30 
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minutes to block reduced cysteine residues. Filter washing was then carried out thrice utilizing 100 

μl UA buffer followed by washing twice with 100 mM TEAB. Afterwards, the protein suspensions 

were digested overnight with 2g trypsin (Promega) in a 40 μl solution of 100mM TEAB buffer at 

37 °C, and the peptides were collected as filtrates. A UV spectral density measurement at 280nm 

was performed to determine the peptide content of the filtrate.

TMTPro labeling

The TMT16-plex reagents (Thermo, A44520) were prepared according to the manufacturer's 

instructions and diluted fourfold with acetonitrile. For peptide labeling, 20 μL of TMT reagent was 

added to each digest at a ratio of 1:5 (sample to tag). Peptides from ten tumor tissue samples were 

labeled using channel 15 and QC_Mix peptides as internal reference samples were labeled using 

channel 134N. After checking labeling efficiency, 9 mL of 5% hydroxylamine was added to quench 

the reaction after pooling and analyzing each sample with MS. The samples were pooled into 27 

TMT groups, each with a QC, and desalted with Sep-Pak solid-phase extraction columns of 100 mg. 

Pooled peptides were fractionated into 20 fractions utilizing Thermo Scientific™ Pierce™ High 

pH Reversed-Phase Peptide Fractionation Kit. After vacuum centrifugation, each fraction was 

concentrated and reconstituted in 15 L of 0.1% (v/v) formic acid. Collected peptides were 

subsequently desalted utilizing C18 Cartridges (Empore™ SPE cartridges C18 (standard density), 

bed I.D. 7 mm, volume 3 ml, Sigma) and reconstituted in 40 µl of 0.1% (v/v) formic acid. LC 

fractionated pooled peptides, and the fractions were combined into 20 fractions before desalting for 

LC-MS/MS analysis.

Mass Spectrometry Assay

ThermoFisher Scientific's Orbitrap Exploris 480 and EASY-nLC1200 liquid chromatography (LC) 

pump were used to collect proteomic data. Using a 25 cm column, peptides were separated at 250 

nl/min over a 90-minute linear gradient. Using the Orbitrap mass analyzer with a resolution of 

60,000 at 200 m/z, 350-1500 m/z was selected for analysis, with a maximum injection time of 40 

ms, and a normalized AGC of 300%. To proceed with sequencing, charge states ranging from 2 to 

5 were required, and a dynamic exclusion window of 120 s was set. The data were collected in 
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positive ion mode and centroided online.

Mass spectrometry data analysis

Maxquant was used to analyze MS data, and the Uniprot database was downloaded 

(http://www.uniprot.org). The enzyme was set to trypsin, with the maximum missed cleavage 

allowed being 1. The carbamidomethylation of cysteine residues (+57.0215 Da) and TMT tags on 

lysine residues (+229.1629 Da) have been designated as static modifications, while methionine 

residue oxidation (+15.9949 Da) was set as a variable modification. For protein identification, the 

reported data were based on a 99% confidence level, with a FDR of 1%.

Cluster analysis of proteins 

An analysis of hierarchical clustering was conducted using Cluster 3.0 software 

(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) and Java Treeview software 

(http://jtreeview.sourceforge.net). In addition to the dendrogram, a heat map was provided as a 

visual representation of the similarity of the observations using the Euclidean distance algorithm 

and the average linkage clustering algorithm (which uses centroids to cluster observations).

Pathway enrichment analysis

Using DAVID software (https://david.ncifcrf.gov/), differentially expressed proteins in tumors, 

normal adjacent tissue (NAT), and normal adjacent tissues (NAT) were analyzed for Gene Ontology 

and KEGG pathway enrichment. Based on KEGG pathways and categorical annotations, including 

the GO term "biological process", Fisher's exact test was used to assess pathway enrichment analysis 

significance.

Library preparation for RNA-seq, RNA-seq data process, and downstream analysis

RNA was extracted from 10 to 20 mg tissue using the RNeasy Mini Kit (Qiagen, Hilden, Germany). 
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Agilent 2100 bioanalyzer was used to assess RNA integrity, and NanoDrop 2000 was used to 

measure RNA concentration (Thermo Fisher Scientific, Wilmington, DE). The full transcriptome 

sequencing libraries with poly-A enrichment method were prepared using the NEBNext Ultra RNA 

Directional Library Prep Kit (NEB#420) according to the manufacturer’s instructions. The 150 bp 

paired-end sequencing was performed on a HiSeq X10 sequencer (Illumina, San Diego, CA). 

Raw reads were initially processed by Trimmomatic (v0.36) to remove adaptor sequences and bases 

with low sequencing quality. Trimmed reads were mapped to the GRCh38 reference genome using 

Hisat2 (v2.1.0). The transcripts were then assembled by Stringtie2 (v2.0.6) with GENCODE v38 

annotation data. For the quantification of gene expression, the count matrix was normalized using 

the Trimmed Means of M values method using edgeR (v3.32.1) R package. 

We identified differentially expressed genes between groups using the Wilcox rank-sum test and 

Bonferroni p-value adjustment. For sample clustering, we chose 5000 genes with the highest median 

deviation abundance from all genes differentially expressed in tumors, and we then used the non-

negative matrix factorization (NMF) method in sequential cluster numbers ranging from two to six, 

using CancerSubtypes (v1.14.0) R package. The three-cluster result generated by NMF was used 

for the following analysis based on the silhouette value. The ComplexHeatmap (v2.4.2) R package 

was used to create the gene-cluster heatmap. The overall survival time difference between patients 

from three clusters was evaluated by log-rank test using survival (v3.2) R package and visualized 

by survminer (v0.4.9) R package. When analyzing continuous variables, the ANOVA test was used, 

whereas categorical variables were analyzed with the Chi-squared test. Based on the differentially 

expressed genes in each cluster, compared to samples from the remaining two clusters, the GO 

enrichment and GSEA results were calculated and visualized using clusterProfiler (v3.16.1), 

msigdbr (v7.5.1) and enrichplot (v1.8.1) R package.

Data integrated analysis utilizing TCGA database

In this study, RNA-sequencing data were obtained from The Cancer Genome Atlas (TCGA) and 

analyzed using the GDCRNATools package. The mRNA expression levels of CHK1, H2AX, RAD51, 

DNA-PKCS, KU70, and CCNE1 mRNA expression in HCC, as well as the overall survival (OS) 

and disease-free survival (DFS) data, retrieved from the Gene Expression Profiling Interactive 

Analysis (GEPIA) database (http://gepia.cancer-pku.cn/).

http://gepia.cancer-pku.cn/
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Tissue microarray and immunohistochemical staining

According to our previous study[32, 36, 50], Shanghai Outdo Biotech constructed a 113-tissue 

microarray cohort specifically for immunohistochemical detection from HCC tumors and normal 

tissues. IHC was performed by soaking paraffin-embedded tissue sections in xylene paraffin, 

ethanol rehydrated, and 10% hydrogen peroxide solution for 10 minutes, followed by boiling the 

repair solution at 100°C for 30 minutes. The sections were then incubated with primary and 

secondary antibodies at room temperature. Depending on the intensity and area of staining, IHC 

scores are assigned. Staining intensity score: 0, no staining reaction; 1, mild reaction; 2, moderate 

reaction; 3, strong reaction. Staining area score: 0 (0%), 1 (30%), 2 (30-60%), and 3 (>60%). 

Multiplying intensity and area scores resulted in the final score. The final WEE1 scores of all HCC 

tumor tissues were divided into two groups: WEE1-Low (< 4) and WEE1-High (≥4). 

Animal experiments

This study used mice obtained from the Shanghai Experimental Animal Center of the Chinese 

Academy of Sciences (C57BL/6, NOD-SCID or nude, 4-6 weeks old).

Based on our previous study[36] we established PDX models using human HCC tumor tissues 

obtained from patients undergoing surgical resection at The First Affiliated Hospital, Zhejiang 

University School of Medicine. The tumor size was 100 to 200 mm3 three weeks after xenograft 

inoculation, and all mice were randomly divided into eight groups (Vehicle; gemcitabine, 100 mg/kg, 

i.v., twice a week; sorafenib, 60 mg/kg, p.o., Q.d.; oxaliplatin, 10 mg/kg, i.p., Qw; epirubicin HCl, 

3.5 mg/kg, i.v., Q.d.; 5-FU, 50mg/kg, i.p., twice a week; irinotecan, 15 mg/kg, i.p., Once every five 

days; paclitaxel, 10 mg/kg, i.v., twice a week).

We established subcutaneous and orthotopic xenograft models using HCC cells in mice[50]. For the 

subcutaneous xenograft model, we injected HCC cells subcutaneously (4 × 106 cells/100 μL PBS) 

and initiated treatments when tumors reached 100-200 mm3 after random grouping. For the 

orthotopic xenograft model, we employed small live animal imaging techniques using D-luciferase 

sodium salt (Yeasen, Shanghai, China). Hepa1-6 cells were transfected with luciferase and injected 

into the liver's right lobe of C57BL/6 mice. After two weeks of tumor growth, mice underwent drug 

treatment for another two weeks before analysis. We followed guidelines for animal handling and 
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care throughout the experiment.

The drug regimen included four groups: vehicle, oxaliplatin (10 mg/kg every 3 days, intravenously), 

adavosertib (50 mg/kg once daily, intravenously), and a combination of both treatments. We 

initiated treatments when tumors reached 100-200 mm3 after random grouping into four groups: 

vehicle, oxaliplatin, adavosertib, and the combination of oxaliplatin and adavosertib, and continued 

for two weeks. At the end of treatment, tumors were harvested and analyzed using assays, as well 

as tumor size measurements every other day.

Cell culture

Human HCC cell lines (SNU449, PLC/PRF/5, HepG2, Hep3B, SNU182, SNU387, HCCLM3, 

Huh6, Huh7, SK-Hep-1) and mouse HCC cell line (Hepa 1-6) were purchased from the Shanghai 

Cell Bank, Chinese Academy of Sciences, and were cultured in recommended medium 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. CCTCC 

performed short tandem repeat sequence (STR) profiling on all cell lines to prevent cross-

contamination. Every 15 passages, the cells are expanded and frozen, and mycoplasma 

contamination is confirmed negative for all cell lines.

Synthetic lethal screens 

From Vigenebio, we procured the human kinome gRNA library lentivirus, which contains 3,052 

unique sequence-guided RNAs targeting 763 human kinase genes. Lentiviral transduction was used 

to introduce the kinome CRISPR library into HCC cells. lentiGuide-Puro (lentivirus containing a 

pooled kinome-scale CRISPR knockout library) was transfected into Huh7 cells and cultured with 

oxaliplatin or without it. Genomic DNA was isolated after two weeks of incubation, and guide RNA 

abundance was determined by high-throughput sequencing before MAGeCKFlute analysis. An 

Illumina deep sequencing analysis was performed on pooled samples of stably expressing sgRNA 

cells cultured for 14 days. By using MAGeCK's mle module, raw sgRNA counts were uploaded 

into the algorithm to determine gene significance (beta scores) using maximum likelihood estimates. 

Oxaliplatin synthetic lethal genes were identified by filtering for a beta score > 1 and p < 0.05 in the 

treatment group but a beta score ≤ 1 in the control group.

小女子主义
高亮
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Cell viability, colony formation, and oncosphere formation assays.

As previously described[32], viability and colony formation assays were performed. Briefly, HCC 

cells were inoculated overnight and exposed to the indicated doses of oxaliplatin and adavorsertib 

combination for 2 days. The viability of the cells was determined using the Cell Counting Kit-8 

(Dojindo Molecular Technologies, Rockville, MD, USA). Each dose of the drug combination was 

tested in six replicates. Chou-Talalay calculated the combination index (CI) as a measure of drug 

synergy[51]. 

For the oncosphere formation assay, we prepared cells in a serum-free medium, seeded them in 

ultra-low attachment plates (Corning, USA), and allowed them to grow for six hours. The 3D 

oncospheres of cells were photographed after 5-7 days with a fluorescence microscope (OLYMPUS, 

IX81). 

During the colony formation assay, cells were incubated overnight. Following 10 days of treatment, 

various doses of drug combinations were used. The cells were stained with Jimsa (Nanjing, 

Jiancheng Technology). Each well of the plate was then photographed and analyzed.

Cell migration and invasion assay 

To perform cell migration and invasion experiments, serum-free medium 300 μL containing 2 × 104 

HCC cells in different treatment groups was added to Transwell culture chamber pre-treated with 

or without Matrigel (BD Biosciences, San Jose, CA, USA). 700 μL medium containing 10% FBS 

was added to the lower chamber. The cells that migrated or invaded outside the filters were then 

stained and photographed for analysis.

Wound healing assay

To allow cells to adhere to the wells, cells from different treatment groups were inoculated into 

wells and cultured for 24 hours. A cell-free gap was then created by removing the culture insert. 

Cells were cultured in a serum-free medium for drug treatments, photographed and the distance on 
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either side of the cell border was measured at different time points.

RNA sequencing and data processing

The Huh7 cells were inoculated into 10 cm diameter culture dishes and treated with various drugs 

for 24 hours. Cells were collected in RIPA buffer for RNA sequencing. RNA sequencing services 

were provided by Genedenovo Co.(Guangzhou, China), using Illumina HiSeq 2500 (Illumina, 

USA). Differential expression analysis was performed using DEseq2 (v3.14.0) in the R statistical 

environment (v3.5). 

 

Western blot analysis

We prepared protein extracts on ice with RIPA cell lysis buffers (Thermo Scientific, Waltham, MA, 

USA) containing phosphatase inhibitors (1:100). Western blot analysis was performed on lysates 

and prestained protein markers (M221, GenStar, Beijing, China) after SDS-PAGE and PVDF 

membrane transfer. TBST (Tris-buffered saline and 0.1% Tween-20) with 5% nonfat dry milk was 

used for blocking the membranes for one hour, before primary and secondary antibodies (Table S17) 

were incubated and analyzed by Bio-Rad. 

Immunofluorescence assay 

After seeding HCC cells into confocal dishes (20,000 cells per dish) overnight, cells were washed 

with PBS and fixed with 4% paraformaldehyde for 10 minutes. Incubation was performed overnight 

with primary antibodies diluted with antibody dilution buffer (1% BSA and 0.5% TritonX-100 in 

PBS) after permeabilization and blocking with 4% bovine serum albumin (BSA) (Absin, Shanghai, 

China). The cells were incubated with the appropriate secondary antibody (EarthOx, USA) for 1 

hour in the dark. In the final step, cells were stained with DAPI (Sigma-Aldrich, USA) for 10 

minutes and imaged using a high-resolution confocal microscope (Olympus, Japan).
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Comet assay

Perform comet assays using CometAssay Kit (Trevigen) and the mean tail moment was calculated 

as an index of DNA damage by using CASP software.

Analysis of DSB repair by HR reporter assays and NHEJ reporter assays

As previously stated , the effectiveness of DNA double-strand break repair was assessed utilizing 

GFP-based reporter gene experiments. Cells were cotransfected with pDRGFP or pimEJ5-GFP and 

I-Sce1 expression plasmids to induce DSBs. Flow cytometry was used to determine HR and NHEJ 

efficiency 24 hours after treatment.

Cell cycle and apoptosis analysis

After synchronization in no-serum medium for 48 hours, the HCC cells were released and cultured 

in complete medium for further cell cycle analysis. After fixing the cells in 75% ethanol overnight 

at 4 °C, the cells were stained with DNA Prep (Beckman Coulter, Brea, CA, USA), and flow 

cytometry was used to analyze the proportion of cells in each phase of the cell cycle. 

Following the manufacturer's instructions, we collected, washed, and stained HCC cells with FITC-

conjugated Annexin V and propidium iodide to analyze apoptosis. The percentage of apoptotic cells 

was analyzed using flow cytometry. GFP-positive cells. 

Metaphase spread assays

At 37°C, cells were exposed to Colchicine (100 ng/ml) (#HY-16569, MedChemExpress) for 2 to 

3.5 hours and 75 mM KCl for 30 minutes. After fixation in methanol:acetic acid (3:1) at 4°C 

overnight, the slides were air-dried, stained with DAPI, and coded for blind analysis.

 

Hydrodynamic injection models 
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We performed the HDI model on C57BL/6 mice by injecting PBS containing 10μg of Sleeping 

Beauty (SB) transposon, 15μg of C-MYC, and 15μg of N-RAS plasmid through the tail vein within 

5-7 seconds, as described in our previous study[32, 33, 50]. After two weeks of injection, the mice were 

treated with drugs for another two weeks. They were sacrificed and the liver weights were 

determined. The growth of primary liver tumor foci in mice was observed using micro PET/CT. 

The survival time of mice was recorded for overall survival analysis. 

Patient-derived tumor organs (PDTOs) screening drug models 

PDTO models were constructed as described in our previous study[35]. Following cure of the 

hydrogels, successful PDTOs were cultured for five days, followed by seven days of drug 

administration. PDTO live/dead cell staining was performed using a Calcein-AM/PI double staining 

kit (Dojindo). Confocal microscopy was used for quantitative analysis of the staining.

Bioinformatics analysis

Replication stress genes (R-HSA-176187) and homologous recombination repair genes (R-HSA-

5693579) were obtained from MSigDB. The single-sample gene set enrichment analysis (ssGSEA) 

score was calculated using the GSVA R package with default parameters based on replication stress 

or homologous recombination repair genes. K-means clustering was performed using 

ConsensusClusterPlus R package based on 37 replication stress-related genes or homologous 

recombination repair-related genes. The default parameters of CIBERSORT were used to analyze 

the tumor infiltrating immune cell profile, with significant p-values derived from limma R package.

Statistical analysis

GraphPad Prism and SPSS 19.0 for Windows programs and Prism GraphPad (GraphPad Software 

Inc, San Diego, CA, USA) were used for all statistical analyses. The data were expressed as mean 

± standard deviation (SD). Kaplan-Meier survival analysis and log-rank tests were used for the 

overall survival analysis. Students' two-tailed t-tests or one-way analysis of variance (ANOVA) 

were used to measure differences between groups. P-values are indicated by * for P < 0.05, ** for 
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P < 0.01, and *** for P < 0.001.

Data availability

Upon reasonable request, the corresponding authors can provide data supporting this study's 

findings. 

Ethics statement 

The tissue samples were obtained from patients with HCC who underwent surgery at the First 

Affiliated Hospital of Zhejiang University School of Medicine. Each patient gave his or her 

written informed consent. The Ethics Committee of the First Affiliated Hospital of Zhejiang 

University School of Medicine (Ethics Code 2021-384) approved this study. Animal experiments 

were approved by the Animal Care Committee of Zhejiang University (Ethics Code 2019-1218) 

and conducted in strict compliance with the National Institutes of Health Animal Care and Use 

Guidelines.
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Figure legends

Graphical Abstract

A schematic model of the mechanism by which WEE1 kinase inhibitor AZD1775 improves 

chemotherapy sensitivity in HCC patients, as well as a potential precision drug treatment strategy 

for HCC patients.
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Figure 1. Molecular subtypes of HCC identified using proteomic and transcriptomic analyses. 

(A) The experimental design and the number of samples used for proteomic and transcriptomic 

analyses were summarized. (B) Subtyping results based on the 178 HCC tumor enrichment scores 

in the HCC proteomic samples; S-I (red, n = 54), S-II (green, n = 42), and S-III (blue, n = 82). The 

heat map shows the Z-Score of the three subtypes. Grey represents the absence of patient clinical 

information. (C) Kaplan–Meier curves of overall survival (OS) and disease-free survival (DFS) 

among the 3 proteomic subtypes in the HCC cohort. Log-rank test and BH method for adjusting P 
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value. Among all proteomic subtypes, P = 0.00014 (OS); P = 0.0021 (DFS). (D) Integrated analysis 

of differentially activated metabolic and signaling pathways among the three proteomic subtypes. 

(E) Subtyping results based on the 94 HCC tumor enrichment scores in the HCC transcriptomic 

samples; S-I (red, n = 20), S-II (blue, n = 33), and S-III (green, n = 41). The heat map shows 

normalized enrichment scores (NES) of the 3 subtypes. Grey represents the absence of patient 

clinical information. (F) Kaplan–Meier curves of OS and DFS among the 3 transcriptomic subtypes 

in the HCC cohort.  Log-rank test and BH method for adjusting P value. Among all transcriptomic 

subtypes, P = 0.0011 (OS); P = 0.00023 (DFS). (G) Integrated analysis of differentially activated 

metabolic and signaling pathways among the three transcriptomic subtypes.

Figure 2. WEE1 was identified as a synthetic lethal gene targeted by oxaliplatin, promoting 
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replication stress accumulation in HCC.

(A) Schematic of construction of PDX models of different proteomic subtypes. (B) The HCC 

xenografts of PDX models were measured every three days after inoculation. Tumor weight (g) of 

HCC xenografts in PDX 1 to PDX 4 from the different groups were shown (n = 5 per group). (C) 

IHC staining results of p-RPA2 (S4/S8) and the quantification of the indicated treatment groups 

from the PDX models. Scale bars, 100 µm. (H) Schematic of the CRISPR-Cas9 library screen. (D, 

E) Scatter plot of beta-score in control and oxaliplatin-treated group. Red dots represent genes 

decreased only in the oxaliplatin-treated group (n = 10). WEE1 was found to be most significantly 

altered according to differential beta-score and was labeled. (F) Representative TMA stained images 

illustrating WEE1 expression levels in tumors and adjacent non-tumor tissues from HCC patients 

(left panel). This cohort is an additional, specifically designed group for IHC staining on tissue 

microarrays. IHC scores quantifying WEE1 expression in matched tumor and non-tumor tissues 

from 113 liver cancer patients are presented on the right panel. (G) Relative mRNA expression 

levels of CDK1, and WEE1 in HCC tumor (T) versus normal (N) tissues (n = 94). (H) The disease-

free survival and overall survival analysis of patients with LIHC in WEE1 high-level and low-level 

groups from the TCGA and GTEx databases by GEPIA. Data are shown as mean ± SD. ***P < 

0.001; **P < 0.01; *P < 0.05; n.s., not significant. 
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Figure 3. Inhibition of WEE1 by adavosertib induces synergistic cytotoxic effects with 

oxaliplatin in vitro and in vivo. 

A) Dose-response curve of the indicated human HCC cell lines treated with adavosertib (blue), 

oxaliplatin (orange), and adavosertib + oxaliplatin (red), from a 2-day CCK-8 assay (n = 6 per 

group). Drug synergies of each cell line were determined by the combination index (CI) calculated 

by the Chou-Talalay method. The combination index (CI) quantitatively depicts synergism (CI < 

1). (B, C) Colony formation assays of HCC cells exposed to oxaliplatin (2 uM) and/or Adavosertib 
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(100 nM). Colonies containing more than 50 cells were counted after 10-14 days of treatment (n = 

3 per group). (D) Oncosphere formation assays were performed on Huh7 and SNU449 cells cultured 

with oxaliplatin (10 uM) and/or adavosertib (500 nM) grown for 7 days (n = 3 per group). The scale 

bar is 2 μm. (E-H) Tumor volume (mm3), tumor weight (g), and the body weight of the Huh7 

xenograft models were assessed in different treatment groups (n = 6 per group). (I) The images of 

small living animal imaging using D-luciferin sodium salt were shown (n = 5 per group). (J) 

Radiance and counts of different treatment groups were shown (n = 5 per group). (K) Representative 

images indicated tumors with white circles (n = 5 per group). Scale bars, 1 cm. Data are shown as 

mean ± SD. ***P < 0.001; **P < 0.01; *P < 0.05; n.s., not significant. 



46

Figure 4. Synergistic enhancement of oxaliplatin-induced DNA damage by adavosertib 

through homologous recombination inhibition in HCC cells.

(A) GSEA of DNA damage response in RNA-seq data from Huh7 cells treated with oxaliplatin (10 

μM, left) or adavosertib (500 nM, right) for 24 hours. (B) Western blot analysis of DNA damage-

related proteins in the SNU449 and Huh7 cells with indicated treatments for 24 hours. (C) 

Representative comet assay images from SNU449 and Huh7 cells with indicated treatments (left). 

DNA in the tail of each treatment group was analyzed (right). n = 50 cells per cell line and condition. 
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(D) Immunofluorescence analyzed levels of γH2AX (red; DNA double-stranded break marker). 

Representative images are shown and the percentage of γH2AX-positive cells is plotted. (E) 

Western blot analysis of DNA damage-related proteins in the SNU449 and Huh7 cells with 

indicated treatments for 24 hours. (F) Heatmap of genes related to DNA_REPAIR in RNA-seq data 

from Huh7 cells with indicated treatment. (G) The pDR-GFP reporter system was adapted to 

evaluate the HR function in both Huh7 and SNU449 cells. GFP-positive cells were normalized by 

flow cytometry (n = 3 per group). (H) Western blot analysis of HR-related proteins in the SNU449 

and Huh7 cells with indicated treatments. (I) The pimEJ5-GFP reporter system was adapted to 

evaluate the NHEJ function in both Huh7 and SNU449 cells (n = 3 per group). The proportion of 

GFP-positive cells was determined using flow cytometry. (J) Western blot analysis of NHEJ-related 

proteins in the SNU449 and Huh7 cells with the indicated treatments. (K, L) Representative images 

of immunofluorescence staining of RAD51 foci (green) or 53BP1 foci (green) and γH2AX (red) 

were conducted for HR or NHEJ repair activity, respectively. Scale bar, 5 μm. Data are represented 

as the mean ± SD. *P < 0.05, **P < 0.01 and ***P < 0.001. 
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Figure 5. The combination of adavosertib and oxaliplatin disrupts the cell cycle and 

accumulates replication stress. 

(A) GSEA results of cell cycle arrest from the sequence data from Huh7 cells treated with oxaliplatin 

(10 μM, left) or adavosertib (500 nM, right) for 24 hours. (B) Flow cytometry was used to analyze 

the cell cycle distribution of SNU449 and Huh7 cells treated with different concentrations of drug 

or oxaliplatin (5 μM, 10 μM, 20 μM). The relative quantifications are presented (n = 3 per group). 

(C) The relative quantifications of cell cycles of SNU449 and Huh7 cells treated with vehicle or 
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adavosertib (250 nM, 500 nM, 1000 nM) were analyzed by FACS (n = 3 per group). (D) Western 

blot analysis of G2/M checkpoint-related proteins in the SNU449 and Huh7 cells with indicated 

treatments for 24 hours. (E) GSEA results of G2/M checkpoint-related pathways in sequence data 

from Huh7 cells treated with oxaliplatin (10 μM) for 24 hours. (F) Cells with indicated treatments 

were assessed for the cell cycle distribution of SNU449 (top) and Huh7 (bottom) cells by FACS 

analysis (n = 3 per group). (G) Percentage of pHH3-positive (M phase-specific marker) cells in the 

indicated cell lines. Fields were captured randomly, counting DAPI-positive cells over at least 300 

cells (n = 3 per group). Scale bars, 50 μm. (H) Western blot analysis of G2/M checkpoints-related 

proteins in cells with indicated treatments for 24 hours. (I) Levels of p-RPA2 (S4/S8) were analyzed 

by immunofluorescence. Representative images are shown (left) with a scale bar of 50 μm. The 

percentage of p-RPA2(S4/S8)-positive cells is plotted (right). Fields were captured randomly, 

counting DAPI-positive cells over at least 300 cells (n = 3 per group). Scale bars, 50 μm. (J) 

Representative images of metaphase spreads are shown (left). A total of 50 metaphases were 

analyzed from each group. Chromosomal abnormal proportions under each condition are plotted 

(right). The scale bar is 5 μm. (K) Representative images of DNA damage at different stages of 

mitosis were shown by co-staining with anti-pHH3 (S10; Green), anti-γH2AX (Red), and DAPI 

(Blue). Scale bars, 5 μm. Data are shown as mean ± SD. ***P < 0.001; **P < 0.01; *P < 0.05; n.s., 

not significant. 
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Figure 6. The combination of adavosertib and oxaliplatin induces mitotic catastrophe and 

apoptosis.

(A) Representative images of mitotic catastrophe cells. Scale bar: 5 µm. (B) Representative images 

of the morphology of cells with indicated treatments were captured by confocal microscopy. The 

scale bar is 50 μm. (C) The percentage of mitotic catastrophe cells under each condition is plotted. 

Fields were captured randomly, counting DAPI-positive cells over at least 300 cells each group. (D) 

Representative images of mitotic catastrophe cells expressing apoptotic signals by 

immunofluorescence staining with C-PARP (red). Scale bar: 5 µm. (E) Representative images of 

cell apoptosis analysis by FACS in the indicated treatments for 48 hours. (F) The relative 

quantifications of cell apoptosis analysis by FACS in the indicated treatments for 72 hours (n = 3 
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per group). (G) Western blot analysis of apoptosis-related proteins in cells with indicated treatments 

for 72 hours. (H) HE, IHC, and TUNEL staining results in the indicated treatments from the 

subcutaneous HCC xenograft model. Scale bars, 100 µm. Data are represented as the mean ± SD. 

*p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 7. The combination of adavosertib and oxaliplatin shows synergistic tumor suppression 

effect in HDI models and sorafenib resistant cell lines.

(A) Establishment of the HDI model. (B) PET/CT results and livers of the HDI model with the 

indicated treatments (n = 3 per group). (C) Representative images of tumor foci from the HDI HCC 

model (n = 3 per group). (D) HE staining of tumor foci from the HDI model. Representative images 

indicated tumors with black circles. Scale bars indicate 2 mm or 200 um. (E) Survival analysis of 

mice with different treatments in HDI HCC models (n = 10 per group). Log-rank test for adjusting 

P value. (F) Dose-response curve of the sorafenib-resistant SNU449 (SNU449-SR) cells treated 
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with adavosertib (blue), oxaliplatin (orange), and adavosertib + oxaliplatin (red), from a 2-day CCK-

8 assay (n = 6 per group). (G) Colony formation assays of SNU449-SR cells exposed to oxaliplatin 

(2 uM) and/or Adavosertib (100 nM). Colonies containing more than 50 cells were counted after 10 

days of treatments (n = 3 per group). (H) Oncosphere formation assays were performed on SNU449-

SR cells cultured with oxaliplatin (10 uM) and/or adavosertib (500 nM) grown for 7 days. The scale 

bar is 2 μm. (I) Representative comet assay images from SNU449-SR cells with indicated treatments 

(left). DNA in the tail of each treatment group was analyzed (right). n = 50 cells per group. (J) Cells 

with indicated treatments were assessed for the cell cycle distribution of SNU449-SR cells by FACS 

analysis (n = 3 per group). (K) The relative quantification of cell apoptosis analysis by FACS in the 

indicated treatments for 72 hours (n = 3 per group). (L) Western blot analysis of SNU449-SR cells 

with indicated treatments. Data are represented as the mean ± SD. *p < 0.05, **p < 0.01, ***p < 

0.001. 
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Figure 8. Classification and individualized treatment strategies for hepatocellular carcinoma 

based on replication stress levels. 

(A) The upregulation of genes involved in RS response may serve as a useful marker for identifying 

subgroups of HCC patients. The heatmap illustrates the expression levels of genes implicated in RS 

response in both tumor and adjacent tissues. Out of 94 patients with available tumors and paired 

adjacent tissues, 61 patients demonstrated a high response to RS, while the remaining 33 patients 

showed a low response based on K-means clustering. Furthermore, the Kaplan-Meier curves 



55

revealed that a high level of RS in tumor tissues corresponded with a poor prognosis for the patients. 

*P < 0.05, **P < 0.01 and ***P < 0.001. (B) Histogram showing the distribution of percentage 

values comparing RS group expression with clinicopathological features in a cohort of 94 HCC 

patients. (C) Nonrandom distribution of RS group and HR group across three transcriptomics 

molecular subtypes. (D) The schematic illustrates the use of PDTO and PDX models for validating 

drug sensitivity in patients with different RS levels. (E) Representative images depicting dead/alive 

cell ratios in HCC-PDTOs treated with various drugs for patients 1-5 (n = 6 per group). Scale: 100 

µm. (F) The dead/living cell ratio of HCC-PDTOs derived from patients 1 - 5 in response to different 

drug treatments (n = 6 per group). Data are represented as the mean ± SD, *P < 0.05, **P < 0.01, 

and ***P < 0.001. (G, H) Tumor volume (mm3) of the PDX models derived from high-RS level 

patients (patient 1, 2) and low-RS level patients (patient 4, 5) were assessed in the vehicle, 

adavosertib (50 mg/kg), oxaliplatin (10mg/kg), or adavosertib + oxaliplatin treatment groups (n = 5 

per group). (I) The schematic of classification and treatment strategies for HCC based on replication 

stress levels.
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Research Highlights

• According to proteomic and transcriptomic analyses, targeted replication stress has great potential 

as a liver cancer therapy.

• Through unbiased Kinome CRISPR-CAS9 library screening, we identified the combination of 

WEE1 inhibitors and oxaliplatin as a novel treatment strategy for liver cancer targeting replication 

stress.

• WEE1 inhibitor adavosertib demonstrated a strong synergistic effect with oxaliplatin in multiple 

in vivo and in vitro liver cancer models.

•Adavosertib inhibits oxaliplatin-induced homologous recombination repair and G2/M checkpoints, 

causing chromosomal damage and mitotic catastrophe.

• Replication stress in liver cancer patients can predict prognosis and chemotherapy sensitivity.
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